Educational DVD and
Screening License

More Info

Educational DVD and
Screening License

More Info

Andrew O'Hehir / Salon
Kenneth Turan / Los Angeles Times
Utterly fascinating and inspiring.
Alex Billington /
with one switch, everything changes.

Mumpung libur. Bae ah bnyk tugas ge, olab wkwk ★ Particle Fever (at Perum Karaba) —

About 14 hours ago from Bella's Twitter

watch the film
 Particle Fever

Particle Fever

Stream or download the film.

Pay $16.99 or more to unlock exclusive bonus material from filmmakers Mark Levinson and David Kaplan.

Watch Now $14.99

Festivals and Awards


2013 Sheffield International Documentary Festival: Winner – Audience Award

360° Contemporary Science Film Festival, Moscow 2013: Winner – Grand Jury Prize and Brainstorm Award

Jackson Hole Science Media Awards 2014: Winner – Best Natural Sciences Film, Best Editing, Best of Festival Grand Helix

Pariscience 2014: Winner – Grand Ecran

Grierson 2014: The British Documentary Awards: Winner – Best Science or Natural History Documentary

DocsBarcelona + Medellín 2014 International Documentary Film Festival: Winner –Audience Award

Producer’s Guild Award nomination for Best Documentary

2015 Cinema Eye Awards: Nominated– Audience Award; Winner–Best Graphic Design or Animation

2015 Alfred I. duPont-Columbia Award

2015 Al-Farabi Award for Best Research and Screenplay, Ahvaz International Science Film Festival

2015 U.S. National Academies of Science, Engineering and Medicine Communication Award


Sheffield Doc/Fest 2013 (Audience Award)
Telluride Film Festival 2013
New York Film Festival 2013
Cambridge Film Festival 2013
Vancouver International Film Festival 2013
Contemporary Science Film Festival 360° Moscos 2013 (Grand Jury Prize and Brainstorm Award)
Adelaide Film Festival 2013
Bergen International Film Festival 2013 (runner-up Best International Documentary)
Cork Film Festival 2013
CPH:DOX 2013
Dubai International Film Festival 2013
Palm Springs International Film Festival 2014
Boulder International Film Festival 2014
Portland International Film Festival 2014
True/False Film Festival 2014
CineGlobe International Film Festival 2014
Hong Kong International Film Festival 2014
DocsBarcelona 2014
Docs Barcelona+Medellin 2014
AFO Olomouc Science Documentary Film Festival 2014
Wisconsin Film Festival 2014
River Run Film Festival 2014
Krakow Film Festival 2014
Sydney Film Festival 2014
Melbourne Film Festival 2014
New Zealand Film Festival 2014
Jerusalem Film Festival 2014
Rivertown Film Festival 2014
Helsinki Film Festival 2014
Vilnius Documentary Film Festival 2014
Budapest Documentary Film Festival 2014
Pariscience Film Festival 2014
Milwaukee Film Festival 2014
Genova Science Film Festival 2014
Ahvaz International Science Film Festival 2015

Also Available On:

  • itunes
  • xbox
  • amazon
  • playstation
  • googlePlay
  • sundance
  • charter
  • comcast
  • timeWarner
  • cox
  • verizon
  • rcn
  • att

Sign up for our newsletter to receive upcoming news about the film.

Thank you for signing up!

Educational DVD Available HERE

Includes Customized Video Chapters and Teacher's Guide aligned with Common Core Scientific Standards

HOST A SCREENING of Particle Fever!

Click here to purchase a public performance license or contact Kristin Cooney at for further information.


Imagine being able to watch as Edison turned on the first light bulb, or as Franklin received his first jolt of electricity.

For the first time, a film gives audiences a front row seat to a significant and inspiring scientific breakthrough as it happens. Particle Fever follows six brilliant scientists during the launch of the Large Hadron Collider, marking the start-up of the biggest and most expensive experiment in the history of the planet, pushing the edge of human innovation.

As they seek to unravel the mysteries of the universe, 10,000 scientists from over 100 countries joined forces in pursuit of a single goal: to recreate conditions that existed just moments after the Big Bang and find the Higgs boson, potentially explaining the origin of all matter. But our heroes confront an even bigger challenge: have we reached our limit in understanding why we exist?

Directed by Mark Levinson, a physicist turned filmmaker, from the inspiration and initiative of producer David Kaplan and masterfully edited by Walter Murch (Apocalypse Now, The English Patient, The Godfather trilogy), Particle Fever is a celebration of discovery, revealing the very human stories behind this epic machine.

Mark Levinson

Before embarking on his film career, Mark earned a doctoral degree in particle physics from the University of California at Berkeley. In the film world, he became a specialist in the post-production writing and recording of dialogue known as ADR. He has worked closely with such directors as Anthony Minghella, Francis Coppola, Tom Tykwer, Milos Forman and David Fincher. He is the writer/producer/director of the narrative feature film Prisoner of Time, which examined the lives of former Russian dissident artists after the collapse of the Soviet Union, and had an acclaimed premiere at the Moscow International Film Festival.

David Kaplan

David Kaplan is a professor of theoretical particle physics at Johns Hopkins University and studies supersymmetry, dark matter, and properties of the Higgs boson. After receiving his Ph.D. from the University of Washington in Seattle, David held research positions at the University of Chicago and Stanford’s Linear Accelerator Center. He has been awarded the Outstanding Junior Investigator prize from the Department of Energy and named an Alfred P. Sloan fellow. He has been a featured host and consultant on science programs for the History Channel and National Geographic.

Claudia Raschke-Robinson

Award winning cinematographer Claudia Raschke-Robinson has photographed independent feature films and documentaries for over 15 years. Her most notable feature documentaries are Mad Hot Ballroom (Best Documentary, Karlovy Vary Film Festival 2005), Peabody Award winning Black Magic (2009, ESPN), The Music In Me (HBO series 2008), Oscar-nominated My Architect (add’l DP), Oscar-nominated Small Wonder (add’l DP), and Oscar nominated Sister Rose’s Passion (add’l DP).

Walter Murch

Universally acknowledged as a master in his field, he is revered for his work as a film editor and sound designer, a term that he coined. Murch has worked with, among others, director Francis Ford Coppola on such cinematic milestones as The Godfather I, II and III, and Apocalypse Now, for which he won his first Academy Award in 1979. He also worked on Anthony Minghella’s film The English Patient for which he won an unprecedented double Academy Award in 1996 for Best Film Editing and Best Sound. He has also been nominated for Oscars for The Conversation, Julia, The Godfather: Part III, Ghost, and Cold Mountain. Murch has written a beautiful book on film editing, In the Blink of an Eye (2001).

Anthos Media

Anthos Media LLC is a new company dedicated to the production and distribution of documentary films aimed at the family audience.  Along withParticle Fever, the company has produced The New Public by Jyllian Gunther and two short documentaries – one about the oldest psychoanalytic institute in the United States and the other about first responders to the Haiti earthquake of 2009.  The company is currently working on Letters from Baghdad about the English diplomat Gertrude Bell and Joseph Pulitzer: Voice of the People, about the man behind the prize.

The company’s principals are Dr. Carla Solomon and Andrea Miller. Dr. Solomon, a clinical psychologist and psychoanalyst, is a longstanding advocate for social change through volunteerism and philanthropy. Andrea Miller is an independent producer whose credits include the feature Dark Matter (Sloan Prize, Sundance; best narrative feature, Asian Film Festival), “Pee Wee’s Playhouse” (Emmy), “Shining Time Station,” and the original “Indecision ‘92” (Comedy Central’s longstanding election coverage).  She was formerly an executive at Sony Wonder and also at Turner Networks where she headed the start-up of Cartoon Network Japan.

Robert Miller

Composer Robert Miller has written several works that have been performed by orchestras nationwide. He has been the Composer-In-Residence with the New York-based Jupiter Symphony from 1996 – 1999. The New York Pops performed his orchestrations to Leonard Bernstein’s famed West Side Story Variations at Carnegie Hall. In addition to his symphonic efforts, Miller is considered among the top echelon of composers working in television and commercials. Some of his recent films include a feature documentary, Why We Fight (Grand Jury Prize at Sundance 2005), Red Doors (Best NY Narrative, Tribeca 2005), and the critically acclaimed The Caller (2008).

Graphics and Animation

MK12 is a design and filmmaking collective with acclaim in both commercial and artistic arenas. Founded in 2000, MK12′s work constantly challenges the boundaries between narrative structure and experimental storytelling via juxtapositions of live action, graphic design, nostalgic influence and new technologies. MK12 has been sought after to direct numerous commercial & network-based projects and has been involved with several game promotions & cinematics, and has also created title sequences & in-film graphic FX for feature films such as Stranger than Fiction, The Kite Runner, Holy Wars and Quantum of Solace. Their self-produced short films have been featured in numerous international film festivals.

Savas Dimopoulos

A Greek immigrant who now occupies an endowed chair at Stanford University, Savas has been on an odyssey for 30 years to find the true theory of nature. Many consider him the most likely to have a theory confirmed by the LHC, potentially winning the Nobel Prize. A mentor to many in the field, Savas has recently begun to feel the pangs of age, and worries if he’ll be an active participant in the next revolution.

Nima Arkani-Hamed

An intense, outspoken young theorist, Nima’s father was also a physicist, who spoke openly against the Iranian Revolutionary Guard after the revolution in 1979. In fear for their lives, the family fled into Turkey on horseback. Nima now treats physics with the same life and death imperative. Snatched up by Harvard with a full professorship before he was 30, Nima moved in 2008 to the Institute for Advanced Study in Princeton. With many of his ideas poised to be tested at the LHC, Nima hopes to make the impact his colleagues think he is capable of. He bet several years salary that the elusive Higgs boson would finally reveal itself at the LHC.

Fabiola Gianotti

In 1982, Fabiola received a piano diploma at the Conservatorio Giuseppe Verdi in Milan, Italy. In 1989, she received her Ph.D. in Particle Physics from the University of Milan. She has devoted the last 20 years to the development of the ATLAS detector, the largest detector at the LHC. She became the leader of the experiment just as the LHC began operation, supervising nearly 3,000 physicists and engineers around the world. Like her Italian ancestor, Columbus, Fabiola’s fervent dream for the LHC is to discover an entirely unexpected “new world.”

Monica Dunford

Awarded a prestigious Enrico Fermi Fellowship from the University of Chicago, Monica’s gung ho, adventurous spirit has led her not only to the frontiers of science, but to the boundaries of human endurance. Her “leisure” activities of marathoning, cycling, rowing and mountain climbing have provided useful conditioning for the 16-hour days she regularly spends working on the ATLAS detector. As a young American post-doc, she is excited to be at the center of the physics universe and anxious to make her mark during her stint in Geneva.

Martin Aleksa

Arriving from Austria over 12 years ago, Martin now has a coveted permanent position at CERN. He was one of the original designers of one of the central components of the ATLAS detector, the Liquid Argon Calorimeter. Elected to the position of ATLAS Run Control Coordinator in 2011, Martin was handed overall responsibility for the collection of data from the ATLAS detector just as the LHC began to produce its first new results.

Mike Lamont

Trained as a physicist in England, Mike migrated to the engineering side of the actual collider machine in Geneva. As Beam Operation Leader, he feels a personal responsibility to “deliver beams” of protons to the experiments. His dry wit has been a welcome relief in the adrenalin-charged, high-pressure environment of the CERN Control Center.


If you'd like to keep or share our Particle Fever materials, we've made them available for you. All materials are courtesy of PF Productions. For press inquiries, please contact
General Resources
LHC In The Media
Reading List

Here are some common terms referenced in Particle Fever:

5 Sigma

Sigma, in a statistical sense, is the deviation from some norm and can represent a probability. When a 5-Sigma excess is announced (like evidence for the Higgs), the chance that the Higgs is not there and the data is due to a random fluctuation is 1 in 3.5 million.


ATLAS (A Toroidal LHC ApparatuS) is one of the seven particle detector experiments (ALICE, ATLAS, CMS, TOTEM, LHCb, LHCf and MoEDAL) at the LHC, and one of two (with CMS) looking for the highest energy particles, such as the Higgs Boson, Supersymmetric partners, and Dark Matter.


All particles can be divided into two classes based on an internal property called spin. Matter particles, like electrons or quarks, are fermions. Force carrying particles are bosons.


The Compact Muon Solenoid (CMS) experiment is an LHC detector that lies on its French side and (like ATLAS) its goal is to investigate a wide range of physics, including the Higgs boson, extra dimensions, and particles that could make up dark matter.

Cosmological Constant

A parameter in Einstein’s theory of relativity which, when added, amounts to “vacuum energy”, or energy stored in space itself. It can cause the universe to expand at an accelerated rate — something which appears to be occurring today. The size of the cosmological constant is one of the biggest mysteries in theoretical physics.

Dark Matter

In astronomy and cosmology, dark matter is a type of matter hypothesized to account for a large part of the total mass in the universe. Evidence strongly suggests it isn’t ordinary matter – i.e., it is not made of atoms. A great hope for the LHC is that it will discover a new particle that could explain dark matter.


A hadron is a composite particle made of quarks held together by the strong force (in a similar way as atoms and molecules are held together by the electromagnetic force). Protons and neutrons are hadrons.

Higgs Boson

The Higgs boson or Higgs particle is an elementary particle initially theorized in 1964, and confirmed to exist on 14 March 2013. Its discovery completes the Standard Model, represents the first elementary particle seen without spin, and confirms the existence of the Higgs field.

Higgs Field

The Higgs field fills all of space and, according to the Standard Model theory, was ‘switched on’ moments after the Big Bang, which caused most elementary particles (quarks, the electron, weak force carriers) to acquire mass. The electron mass allows atoms to form and thus the Higgs field is responsible for all normal matter as we know it.


The Large Hadron Collider (LHC) is the world’s largest and most powerful particle accelerator. It first started up on 10 September 2008, and is the largest ring (27 km) in CERN’s accelerator complex. It consists of superconducting magnets to guide the particles and accelerating structures to boost the energy of the particles along the way. The machine is being upgraded currently and will operate at even higher energies in early 2015.


The multiverse is a theoretical description of spacetime in which our known universe is a small part of something much more vast in which the laws of nature might vary from place to place. The multiverse, while potentially a natural consequence of string theory and cosmic inflation, is not yet well-defined and by some is considered controversial.


Particles are, by definition, the smallest physical objects. Elementary particles are point-like, but can carry energy, mass, electric charge and other information or attributes. Study of fundamental particles is a key part of the study of the laws of nature.


Protons are positively charged subatomic particles that, along with neutrons, make up the nucleus of an atom. Protons are the particles that are accelerated and collided at the LHC.

Standard Model

The Standard Model is the current theory of elementary particles. It is literally a list of particles and their interactions which abide by the laws of quantum mechanics and relativity and describe nearly all known physical phenomena in our Universe at the microscopic level.


Supersymmetry is a special type of symmetry in physics which implies that there is a correspondence, at a fundamental level, between fermions and bosons (roughly particles which make up matter and particles responsible for forces). If supersymmetry were true, each Standard Model particle would have a corresponding ‘superpartner’, potentially discoverable at the LHC.

If you’d like to learn more about particle physics, the below references are a great place to start:

CERN: The place where it all happens. Visit Now.

ATLAS Experiment – Official Website

CERN Public Open Days: Tour the largest particle physics laboratory in the world. Visit Now

Lawrence Berkeley Laboratory explains particle physics in Particle Adventure. Visit Now

Want to learn even more about particle physics and theory? If so, the filmmakers of Particle Fever recommend the following literature:

  • The Character of Physical Law, Richard Feynman – Buy 
  • Dreams of a Final Theory, Steven Weinberg – Buy
  • The First Three Minutes, Steven Weinberg – Buy
Thank you for signing up!